Amwme . . =A

NACA RM E9H10

RESEARCH MEMORANDUM

DETERMINATION QF MINIMUM MOMENTS OF INERTIA OF

ARBITRARILY SHAPED AREAS, SUCH AS
" HOLLOW TURBINE BLADES
. By Sel Gendler and Donald F. Johnson

Lewis Flight Propulsion Laboratory
Cleveland, Chio

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON
February 24, 1950

------

RMEngo o




NACA RM ESHLOC

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
RESEARCH MEMORANDUM

DETERMINATION OF MINIMUM MOMERTS OF INERTIA OF

ARBITRARILY SHATPED AREAS, SUCH AS
HOLLOW TUREINE BLADES

By Sel Gendler and Donald F. Jolmson

SUMMARY

A simple accurate method is presented for approximately deter-
mining the minimm moment of Inertla of an erbitrarily shaped ares,
such as the section of a hollow turbine blede. The practical appli-
catlion of this method involves a simple routine tabular procedure.
Incidental to finding the minimam moment of inertia, thils tabular
procedure elso gives the area, the position of the center of gravity,
the moment of inertia sbout any deslred axlas, the product of inertils,
and the principsl axes of inertla. Two exa.mglea ere worked out in
detail: an elllpse tilted at an angle of 30~, and an alrfoll section.

In general, comparison wlth the known values for the ellipse
showed agreement to within 0.5 percent. Thls method was also used to
celculate the varietion in minimum moment of inertia along the leng'bh
of & typicel hollow turbine blade.

IRTRODUCTION

In geveral types of problems involving vibratione of an elastic -
body, it is necessary to know the area, the plane product and the
moment of inertlia sbout a given axis, the minimom moment of inertis,
and the varistions of these guantitlies along an axls through the body.
The most obvious method, that of "counting squares”, can be applied
to obtain the area, the product of inertis, and the moment of lnertia
sbout & given axis. The minimum moment of inertia cen be approxi-
mated by a trisl-and-error procedure of passing several axes through
the center of gravity and celculating the moment of inertia about
each of these axes. This method is long and leborlous and the
acouracy attained depenis & greet deal upon the skill of the operator.
A more expedient method, which 1s in genera.l use, is thet of
numericel integration.
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As a result of an investigation, conducted at the NACA Iewis
leboratory, of the vibration problems of compressor and turblne
bledes in general and hollow turbine blades in particular, 2 simple
accurate method of calculating the moment of inertla about a glven
axls and the minimum moment of inertia of asrbltrarily shaped sec~
tions has been developed. This method combines the well-known
theorles of* moments of inertla end numerlical integration to provide
a simple straightforward tabular procedure for calculating the
sectlon properties. The area, the position of the center of
grevity, the moment of inertles sbout any gliven axls, and the pro-
duct of inertias are cbtained incidental to finding the minimum
moment of inertia. The values obtalined are dependable and may be
calculated to any reascneble degree of accuracy without unduly
increasing the amount of labor. The procedure is 1llustrated by
two simple exsmples, en ellipse tilted at an angle and an airfoll
section, and 18 finally spplied to finding the variation of the
ninimm moment of inertis elong the length of a twisted and tapered
hollow turbine blade.

SYMBOLS

The following symbols are used in this report:

Q

A cross-sectional area
Ar crosa~scctional area of root section
boundary
c chord
r product of inertis gbout the x,y-exes
P product of inertia with respect to axes through centrold
parallel to x,y-axes
I, minimm moment of inertila

Im minimum moment of inertia at root
o

Iy moment of Inertls sbout x-axis

Iy.0 moment of inertis about axis through centroid parallel to
? x-axis

I moment of ipertia 2bout y-axis
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Iy,o moment of Inertia about axis through centroid parallel to
y-axis

Im/Ix,o minimum x inertia ratio

In/Iy,o minimum y inertia ratio

A length of blade

n number of stations into which area is divided

X,y ' reference coordinate axes

x',y!' principal axes about one of which moment of linertia of area
is minlimum

X,y location of centroid of area referred to X,y-axes

X0, 30 location of origln of x*',y'-axes referred to x,y-axXes

a inertia parameter, 2 FO/(Iy;,o - Ix,o)

] angle of x!-axis to x-axis measured In positive counter-

clockwise direction

METBOD

ILet x,y be any set of reference axes with respect to which
the coordinates of the areas under consideration are known (fig. 1).
Let x',y' be the principal axes at the point (xj,y5), such that

the moment of inertla of the area is & minimum about the x'-axls,
and let x,y be the coordinates of the centroid of the area with
respect to the x,y axes. Then (reference 1):

=X
T (1)

Jo=7J
tanze=I2F0 - (2)

-I
' ¥,0 “Xx,0
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Hence, 1t can be derived that

I, =-Fgcot 6 + Iy’°

% (ILO'Ix,o) (li le'z)"' Ix,0 (3)

where
2Fr
0
) == —e————— (4)
Iy,o"Ix,o

Equation (1) states the well-known fact that the moment of
inertia will be least about an axis passing through the centroid.
Equation (2) glives the angle that this axis makes with the x-axis.
In equation (3), which gives the minimum moment of inertia, the sign
before the radical ls so chosen that the first term on the right
side of the equation 1s negatilve.

If the equations of the contour are kmown, equations (1) to
(3) can be solved exactly for the desired quantities. (See the
appendix.) These equations, however, are generally unknown and
approximate methods must be used.

Agsume that the values of y defining the area boundary are
known for n stations along the x-axis. These values may be obtained
by direct measurement from & drawing, or as 1s generally the case for
airfoll sectlons, they may be directly obtained from a teble that
glves the wvalues of y in percentage of chord for a number of stations
along the chord. The following equations then approximately hold:

1181
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Also

The values x; and y; should be taken at the midpoint of the
interval Axjy. It is convenlent to take equal intervals Ax, because
by so doing, A4x; moves to a position in front of the summation sign
and thus considerably shortens computation.
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The problem then reduces to one of tabulating n values of x
and y and obtalning the sums of the various products indicated in
equations (5). The minimum moment of inertia is then found by use
of equations (3) and (4). The accuracy with which the factors in
equations (5) are obtalned increases with n, the number of statlons
used. In general, it wlll be seen from the examples that good
accuracy can be obtained by use of relatively few stations.

In carrying out the preceding calculations, care must be taken
as to the sign of the quantity 4Ax. The summation, as shown by the
arrows in figures 1 and 2, is in such & direction that the area
under consideration is always to the left. If the summation 1is in
the direction of increasing x, the sign of Ax should
be positive; if the summation 1s in the direction of decreasing x,
the sign of Ax should be negative. Thus, in figure 1, Ax 1is
positive for curves C, and Cz and negative for curves C, and

Cy4. This convention has been followed In the derivation of equa-
tions (5) and must be followed in their application.

Graphical solution of I;. - Equation (3) 1s made nondimensiocnal
1f both members are divided by Ix,o'

1l
Im 1 2 2 g0
=1 += |1+ (1+a°) -1 (8)
2© 2 Ix,o

Equation (6) represents an infinite family of straight lines
with the minimum inertlia ratio, Im/Ix,o: as ordinate and

(Iy,o/Ix,o) - 1 as abscissa. (In actual practice, ;t will be
found more convenient to use Iy,o/Ix,o as the abscissa.) All the
lines have a common intercept at Im_/Ix,° =1 and the slopes of
the lines depend on the inertia parameter o as follows:

nojH-

Slope = % |1 + (14a?)

It is evident that the abscissa cannot become less than O
and the ordinate camnot be less than O or greater than l. More-
‘over, there will be no lines with slopes between O and 1. Such a
family is plotted in figure 3. The lilnes giving the maximum value

1181
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of Im/Ix,o will be merely' the reflections of the lines in figure 3
about the point (1,1). If the values of «, Iy,0» &nd I, have
2

been calculated for a sectlon, the values of I; can be obtalned
from figure 3.

Example 1. - Figure 2(a) shows an ellipse tilted at an angle of
12 2

30° to the x-axis. The equation of this ellipse is 5-9— + ¥y =1,

The area, the location of the centrold, the moment of inertia about
the x-axis, the principal axes through the centrold, and the minimum
moment of inertia are to be determined. The ellipse was divided

into ten intervals. The quantities in equations (5) are calculated as
shown in table I. The following values were obtalned:

A = 9.516 I, = 7.212
X = 0.000 I, = 2.363
¥y = 0.000 6 = 0.521 radien

The exact values for the ellipse are:

A = 9.425 I, = 7.069
X = 0.000 I, = 2.356
¥ = 0.000 6 = 0.524 redien

The decrease in percentage error of I, due to choosing a

larger number of Intervals over the ellipse is shown in the follow-
ing table:

Error in calculated Number of stations
velue of I, percent
10 2
2 4
.3 ‘ 10
.1 20

Exemple 2. - A Clark Y airfoil is shown in figure 2(b). The
shape of this eirfoil in terms of the chord is given in table II.
The quantities in equations (5) are obtained as shown in table III.
The final answers are:
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od
A = 815.7 Iy = 26,870 (==
10
' - C
x = 42, 05( 2) I, = 1,894,000 <—°—§
10
- o4
y = 4.853 Iy = 7087 (2=
10
F = 150,600 < @ = 0.0358 radian
10°

DISCUSSION CF RESULTS

Examples 1 and 2 with tables I and IIJ show an application of
the method for cbtaining the minimum moment of Iinertla of arbilirerily
shaped areas. As has already been pointed out, equations (5) are
approximate, the degree of approximation depending upon the number
of stetions consldered. It is evident that in the case of the
ellipse, the error involved ln the use of ten stations ls less than
0.5 percent. Thus, 1t is unnecessary to consider many stetions to
achleve good accuracy.

The numbexr of stations required to give a certalin degree of
accuracy will, of course, depend on the shape of the area under con-
sideration. In order to obtain good over-all accuracy, areas that
have sharp peaks in their contours, such as a cross-shaped section,
will reguire more statione in the vicinity of the péaks than in the
more uniform parts. Fortunately, most cbjects deslt with in physical
problems do not have such sharp peaks. If such an cbject is being
congidered, however, care must be taken in selecting the number of
Intervals and in distributing the intervale. It mey be advantageocus
to take small intervals for certaln parts of the contour and large
Intervals for the rest of the contour.

-Posglble sources of error should be polnted out. If the angle &
is very close to 450, the denominator of equation (2) pecomes very
small. If small errors do occur in the celculation of Iy, and
Iz,0» 1t 18 possible that the wrong sign will be obtained for the
square root of equation (3). If Ix,o is & emall quantity, a large

error in the value of I, could be introduced. Such an error could
easily be prevented beoause by inspection, 1t should be obvious
vhether 6 1s 45° or -45°. In any case, 1t is better to choose the
x',y'-axes such that 6 will not be close to 45°,
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If the coordinate axes are so chosen that the angle € is known
to be small, an approximate form of equation (3) can be used. For
emall 6, a 1s emall and of becomes negligible compared to 1.
Equation (3) then becomes

1
I, = 3 (Iy,o'Ix,o)(l + 1) + Ix,o
Thus, I, as a minimum will equal either I or Ix o?
vhichever is smaller. If, however, the absolute value of ( e o)
J

is large compared to Ix,o: the neglect of even a small quantity

a? can introduce large errors in Iy,

The method described was used to calculate the minimum moment of
inertla of various sectlions along the length of a hollow turbine
blade. Five sections, as shown in flgure 4, including the tip and
root section were used. The results and the area variation are
plotted in dimensionless coordinates, as shown in figure 5. These
variations must be known in order to calculate accurately the natural
vibration frequencies of the turbline blades.

SUMMARY OF KRESULTS

A simple tabular method for obtaining the minimum moment of
inertis of an arbitrarily shaped section was developed. The area,
the position of the centroid, the moment of inertla about an arbi-
trary set of axes, snd the product of inertia were obtalned as part
of this tabular procedure. Although the accuracy obtained using a
glven number of statlons depends upon the irregularity of the area
under consideration, 1t was shown that, In general, high accuracy
could be obtained with the use of comparatively few stations. In
the case of an ellipse tilted at 309, accuracy of greater than 0.5
percent was obtained by the use of ten statlions. A flpal applica-
tion was made In calculating the varlatlon of the minimum moment
of inertia along the length of & hollow turbine blade.

Lewls Flight Propulsion Iaboratory,
Netional Advisory Committee for Asronautics,
Cleveland, Ohio.
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APPENDIX
EXACT SOLUTION OF MINIMUM MOMENT OF INERTIA

Mipnimum moment of inertia. - Let x,y be the ccordinates of a
point of a closed contour relative to & given set of x,y-axes; let
x',y' be the coordinates of this point relative to the principal
axes of the contour (about which the moment of inertia is a mini-
mum); and let 6 be the angle between the two sets of axes., Then,

-—— 2
I,=cot e (xyA-F) + I_y-i A (A1)
where
2(F-X7A) 2 ¥y

(Iy-EZA) - (Tp5 °A)

tan 26 = (A2)

Iy,o-Ix,o

2F
By taking tan 26 = g__t%e_ and letting o = T"—I%_’ the
l-tan™ @ Js0 “X,0

following equation 1s obtained by substituting in equation (Al) and
carrying through the proper trigonometric manipulation:

=
o+

R Ll R EE P

The sign preceding the radical is determined by the condition
that Ix,o'Im and Iy,o'Im must each exceed zero. Thus, if

(Iy,o"Ix o) >0, a minus sign 1is used and if (Ix,o'I ) >0, a
¥
plus slgn 1is used.

J,0

F{x

Exact solution. - If P(x,y) and sre continuous

within and on the boundary of region A, then by use of Gauss'
theorem (reference 2)

ffﬁ'i.%‘zll A = -fP(x,y) dx (a4)
A 4 c

where the integration on the right is performed 1n s poslitive sense
around the boundary C.




91T

NACA RM ESH1O 11

From equation (A4) and the fact that the line integral around

a closed boundary ‘j; P(x) dx equals zero, the following equations

[ae- Lo T

are evident:
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If the equation of the boundary of the sectlon under consider-
ation is known, the quantities in equation (AS5) can then be exactly
determined by carrylng out the line integration indicated. Thse
integration is 1n a direction such that the area 1s always to the

left.



12 NACA RM ESH1O

REFERENCES

1. Timoshenko, S.: Strength of Materials, pt. I. D. Van Nostrand,
Inc. (New York), 2d ed., 1940, pp. 348-353.

2. Osgood, William F.: Advanced Calculus. The Macmillan Co.
(Wew York), 1925, pp. 222-224.

1181



1181

NACA RM E9HIO

TABLE I -~ SOLUTION OF EQUATIONS (5) FOR ELLIPSE

bx x y Nind ¥® xy2 =2y xy .
-0.52915| 2,3812 | -0.6842 044681
1.8520 -.1067 .0114
1.3229 « 3273 +1071
7937 .5889 «4746
.2646 .9973 . 9946
-+2646 1.2592 1.5866
-,7937 | 1.4745 | 2.1742
-1.3229 1.6367 2.6788
-1,8520 1 1,7263 2.8801 .
-2,3812 1.6727 2.7979
Total 8.9920 | 14.2724 20,4439 | -15,9532 16,1181 | -11,4320
0.52915] 2,3812 | ~1.6727 2,7979
1.8520 ) =1.7263 2,8801
-1.3229 | -1.6367 2,8788
« 7937 | =1.4745 2,1742
.2646 | -1,2592 1.5856
-.2646 -.9973 9946
-.7937 ~. 6889 . 4746
-1.3229 -. 3273 .1071
-1.8520 .1067 0114
-2,3812 .6842 . 4681 -
Total -8,9820 | 14,2724 | -20.44392 15,9532 | -16.,1181 | -11,4320
A= -LyAx = 9.5182 Ix,0 = Ix - §2A = 7,2119

ul
[

4|
"

IxyAx .
—a — = 0.0000

EyzAx

-00
oA 0000

2
H%AX_ = 8,4416
Zyd Ax
)

® 7.2119

£x2y Ax = 17.0578

Iy,o = Iy - %24 = 17,0578

Fo *F - XY A = 8.4416

A S
s 0.5214 radlan

2Fy

ac = = 1.7147
Iy,o = Ix,o
-1
I = IY:O
n 2
e = % tan™1 2Fo
IYlo = II,O

X,0
. [1-(1+ ua)i.]-{—Ix o * 2.3628
. »
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TABLE II - SHAPE OF CLARK Y AIRFOIL

Percentage of chord

Distance from leadlng edge

Upper camber

Lower camber

o
1.25
2.50
5.00
7«50
10.00
15.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
95.00
100.00

3.50
5.45
6.50
7.980
8.856
9.60
10.69
11.36
11.70
11.40
10.52
9.15
7.35
5.22
2,80
1.49

3.50
1.93
1.47
93
«63
.42
15
«03

CO0O000O000

é

18T1
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TABLE III - SOLUTION OF EQUATIONS (5) FOR CLARK Y AIRFOIL
Ax | x ¥ ¥2 ¥3 xy®? x2y xy
~10| 10| 9.60 | 92.1600
20 | 11.36 | 129.0496
30 | 11.70 | 136.8300
20 | 11.40 | 129.9600
50 | 10.52 | 110.6704
60| 9.15 | 83.7225
70| 7.35 | 54.0225
80| 5.22 | 27.2484
90 | 2.80 7.8400
Total 79.10 | 771.5634 | 7925.4640 [50,051.6090 [L85,617.0000 | 3389.3000
-s| 2.5} 6.500| 42.2500
97.5| .805 6480
Total 7.305 | 42,8080 | 275.1466 | 168.8050 | 7693.1563 | 94.7375
10| 10| o0.22 .1764 :
20| .03 .0009
0| o o
0] o o
50| o o
60| O 0
70| o o
so| o 0
90| o 0
Total .45 1773 0.0741 1.7820 54,0000 4.8000
5| 2.5| 1.47 2.1609
97.5| © o
Total 1.47 2.1609 3.1765 5. 4022 9.1875 3.6750
2 4
A= -ZyAx = 815.7 °—) I, = _Iyiax 26,370(“ )
104 3 108
%= -EXLX 2 45,05 5 I, = - SxBy Ax = 1,894,000 <°"' )
102 108
2 .
F=-2Y 8% o 4 gs3 _°_> a = 0.07169
2A 102 .
4
=25 8% .45 soo(" I, = 7087 i)
108 108

6

= 0.0358 radlan
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Figure 1. - Arbltrarily shaped section.

ed

(a) Ellipse tilted at 30°.
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x
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(p) Clark Y airfoil.

Figure 2. - Areas under consideration for minimum
moment of inertia.
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Distance
from root
(1no)

o
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Figure 4, ~ Varlation of c¢rogs. section of hollow turbine

blade.

Length, 4 inches.
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